Stem Vax THERAPEUTICS

STEMVAX, LLC

Dwain Morris-Irvin, PhD, MPH Founder, Chief Scientific Officer

StemVax Therapeutics
Los Angeles, California,
A NovAccess Global Company (XSNX)

Overview

- Investment Highlights
- Program Overview
- Technology
- Phase I Trial (Intro)
- Investor Opportunity
- Summary

Investment Highlights

Clinical and Pre-Clinical stage biopharmaceutical company developing next-generation immunotherapy products to treat Brain Cancer.

- Personalized Immunotherapy
- Dendritic cell-based approach to promote anti-tumor immunity
- Enhanced dendritic cell maturation and functionality over firstgeneration vaccine

Lead Candidate, TLR-AD1, dendritic cell-based vaccine for the treatment of glioblastoma multiforme ("GBM")

- Particularly lethal form of cancer with minimal improvements in standard of care.
- Orphan Drug designation
- Preclinical data shows significant increase in survival over parent "first generation" vaccine.

IP estate of 2 issued patents additional patent development

Program Overview

Immunotherapy in Development: TLR-AD1

- Preclinical development demonstrated efficacy over leading dendritic cell immunotherapy approach currently in Phase II clinical trials ("ICT")
- Can be combined with various antigens, including cancer stem cell antigens
- Preparing IND to be filed by end Q1 2021; Phase I clinical trial to start by end Q2 2023 or in Q3 2023
- With filing of IND will also file for Orphan Drug Designation

Program Overview

StemVax, LLC Company Development:

- Seeking initial funding through NIH SBIR and Investors
- Business Plan development
- Executive Board Development
- Scientific Advisory Board

Targeting Tumor

Glioblastoma Multiforme (GBM)

 More than 18,000 brain tumors are diagnosed each year in the United States.

GBM is the most common primary brain tumor in adults.

Five-year survival rates are less than 5% for GBM.

Glioblastoma Multiforme (GBM)

- Standard of Care: Surgical resection followed by radiation and temozolamide chemotherapy remains the most effective treatment.
- 15-month median survival.
- Additional GBM therapies needed Immunotherapy?
 - Vaccination with cytokine-transfected tumor cells
 - Adoptive transfer of tumor-activated T cells
 - Administration of antigen-pulsed dendritic cell (DC) vaccines why?
- All have been associated with enhanced immunity and/or favorable clinical outcomes

Dendritic Cell Vaccine (1st Generation)

- Improves survival in responders (Phase I and II)
- Not a cure

Needs improvement-survival rates, outcomes

Brain Tumor Vaccine

XSNX

Brain Tumor Vaccine

Glioma cell lysate

Freeze-thaw method

Anti-tumor immune response

1st Generation Vaccine-Bulk Tumor Lysate

GBM vaccine non-responders
 GBM vaccine responders

TTS (time from surgical resection immediately preceding vaccination to time of death)

(Wheeler et al, 2008, Cancer Research)

How do we improve DC vaccine?

Toll-like receptor (TLR) adjuvants

2nd Generation Vaccine - 6 Common Antigens (ICT-107)

ICT-107 - Targets Cancer Stem Cells Lead Indication in GBM

- PII data not encouraging and why we overcome the issues with ICT-107
- Why we are better and will succeed?

Antigen

gp100

MAGE-1

IL-13Ra2

Her-2/neu

AIM-2

Trp-2

Treats

melanoma, brain

melanoma, brain, ovarian

brain, ovarian

breast, ovarian

breast, colon, brain

melanoma, brain

Phase I Trial Results for ICT-107

Significant increase in median Progression Free Survival (PFS)

- 16.9 months for ICT-107
- 6.9 months for historical SOC*

Significant increase in 3-year PFS

- 38% for ICT-107
- 6% for historical SOC*

Significant increase in median Overall Survival (OS)

- 38.4 months for ICT-107
- 14.6 months for historical SOC*

Significant increase in 3-year OS

- 55% for ICT-107
- 16% for historical SOC*

Cancer Immunol Immunother. 2013 Jan;62(1):125-35

*Surgery followed by radiation and temozolomide (TMZ). Stupp et al. N Engl J Med. 2005 Mar 10;352(10):987-96.

3rd Generation Vaccine-TLR-AD-1

 Antigen specific or antigens derived from bulk lysate combined with Toll-like receptor (TLR) adjuvants

 Pre-clinical mouse model data show significant improvements in survival and dendritic cell activation and function

Dendritic Cell Assay

Glioma Antigens-Specificity

2.- Current
Toll-like receptor (TLR)
Adjuvants-Activate

TLR2, TLR4, TLR9

TLR Signaling Pathway

- Each TLR family member has its specific signaling pathway.
- TLR signaling is a common pathway to induce inflammatory cytokines.

Pre-Clinical Kaplan-Mier Survival Analysis of Vaccinated Glioma Bearing Mice (Controls)

Median Survival

No Vaccine: 30 days Vaccine: 60 days

Pre-Clinical Kaplan-Mier Survival Analysis of Vaccinated Glioma Bearing Mice (Vaccine vs. TLR adjuvants)

Median Survival

Vaccine: 60 days

Vaccine + Pam3Cys: <90 days

Median Survival

Vaccine: 60 days

Vaccine + CpG: 84 days

Median Survival

Vaccine: 60 days

Vaccine + LPS: 60 days

Median Survival

Vaccine: 60 days

Vaccine + TLR Combos: 81 days

DC Activation Molecules

- Co-stimulatory:
 - CD80 (B7-1)
 - · CD86 (B7-2)
 - · CD40

- MHC II (Major histocompatability complex for antigen presentation to T cells)
- Pro-inflammatory cytokines (IL-12, TNF-α, IL-6)

Co-Signaling Molecules

Glioma Lysate Activates vs. Normal Brain Control (Flow Cyotmetry Assay)

Glioma Lysate Activates DC Through TLRs TLR2 (Flow Cytometry Assay)

Glioma Lysate Activates DC Through TLRs TLR4 (Flow Cytometry Assay)

DC Cytokine Expression (IL-12) After Glioma Lysate and TLR Ligands (ELISA Based Assay)

DC Cytokine Expression (TNF-α) After Glioma Lysate and TLR Ligands (ELISA Based Assay)

PBMDC Cytokine Expression (IL-6) After Glioma Lysate and TLR Ligands (ELISA Based Assay)

Summary

- Glioma lysate activation of DCs is at least partially regulated through TLR signaling and is MyD88 dependent.
- TLR2 signaling in DCs may be one the predominant receptors for glioma lysate signaling.
- Glioma lysate and TLR ligands may work together to maximize an anti-tumor immune response.

Highlights

- Can be combined with any antigen specific technology
- Proven mechanism of dendritic cell maturation and function

Essential for patient-based (personalized) immunotherapy

Phase I Trial with TLR-AD1

Nonrandomized, single-center study

- Cedars-Sinai Medical Center, Department of Neurosurgery
- Twenty GBM patients, newly diagnosed
- Patients will receive Standard of Care (surgery and chemo-radiation)
 followed by three vaccinations of TLR-AD1 every 2 weeks

Milestones Over Next 18 Months

File for IND for Orphan Drug Designation; Initiate Phase I or II Clinical

Trial

- Apply for NIH SBIR grant
- Complete Seed/Series A rounds for a total investment of 5 million

Current Management Team

- Dwain Morris-Irvin, PhD, MPH
 Founder, Chief Scientific Officer
- Christopher Wheeler, PhD
 President
- Peter Weinstein, PhD, JD Legal Council
- XSNX Biotech Advisory Board